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	PART-A
Answer ALL questions                                                                                                                 (10x2=20 )
1. 
Show that the function  is nowhere differentiable.
2. When do we say that a function  is harmonic.
3. 
Find the radius of convergence of the series  .
4. State Cauchy Goursat theorem.
5. Expand  as a Taylor’s series about the point .
6. Define meromorphic function with an example.
7. Define residue of a function at a point.
8. State argument principle.
9. Define the cross ratio of a bilinear transformation.
10. Define an isogonal mapping.

PART-B
Answer any FIVE questions.                                                                                                        (5x8=40) 
11. 

Show that the function  is discontinuous at  given that when and . 
12. 
Find the analytic function  of which the real part is .
13. 

Evaluate along the closed curve containing paths and .
14. State and prove Morera’s theorem.
15. State and prove Maxmimum modulus principle.
16. 
Find out the zeros and discuss the nature of the singularity of  .

17. State and prove Rouche’s theorem.
18. Find the bilinear transformation which maps the points  into the points  respectively.
PART C
Answer any TWO questions                                                                                                       (2x20=40)


19.	(a) 	Let be a function defined in a region  such that  and their first order partial derivatives are continuous in . If the first order partial derivatives of  satisfy the Cauchy-Riemann equations at a point  in D then show that f is differentiable at .
	(b) Prove that every power series represents an analytic function inside its circle of convergence.
20.	(a) 	State and prove Cauchy’s integral formula.




          (b) 	Expand in a Laurent’s series for (i) (ii) 
(iii) .
21.	(a) 	State and prove Residue theorem.

      	(b) 	Using contour integration evaluate  .



22.	(a) 	Let  be analytic in a region  and  for .Prove that f is conformal at .


       	(b) Find the bilinear transformation which maps the unit circle onto the unit circle .
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